

接线说明：

1．VCC，GND：DC7－24V电源输入
2．DC3．3－30V光耦信号输入：
IN1：通道1正极
IN2：通道2正极
GND＿IN：公共端负极

3．A＋，B－：RS485通讯接口，A＋，B－分别接外部控制端的A＋，B－

4．继电1开关信 号输出
NC1，：常闭端，继电器吸合前与COM1短接，吸合后悬空；

COM1 ：公共端；
N02：常开端，继电器吸合前悬空，吸合后与COM 1短接。

5．继电 2 开关信号输出
NC2，：常闭端，继电器吸合前与COM2短接，吸合后悬空；

COM2：公共端；
N02：常开端，继电器吸合前悬空，吸合后与COM 2短接。

6．继电器指示灯：继电器吸合时点亮
7．GND，RXD，TXD：TTL电平UART通讯接口，G ND，RXD，TXD分别接外部控制端的GND，TXD，R $X D$ ，支持连接 $3.3 V / 5 V$ 外部TTL串口

8．RS485和TTL串口选择，当使用RS485通信时， DI接TXD，RO接RXD，使用TTL通信时DI和RO都接NC端

1，打开 1 号继电器（手动模式）
发送：FF 050000 FF 0099 E4
原样返回：FF 050000 FF 0099 E4
备注：（1）发送帧的第3－4个字节代表继电器地址，继电器 1 －继电器 8 的地址分

别为 $0 \times 0000,0 \times 0001,0 \times 0002,0 \times 0003,0 \times 0004,0 x$ 0005，0x0006 0x0007
（2）发送帧的第5－6个字节代表数据， $0 x F F 00$ 代表打开继电器， 0×0000 代表关闭继电器．

2 ，关闭 1 号继电器（手动模式）
发送：FF 0500000000 D8 14
原样返回：FF 0500000000 D8 14
3 ，打开 2 号继电器（手动模式）
发送：FF 050001 FF 00 C8 24
原样返回：FF 050001 FF 00 C8 24
4 ，关闭 2 号继电器（手动模式）

发送：FF 050001000089 D4
原样返回：FF 050001000089 D4
5，打开所有继电器
发送：FF OF 0000000801 FF 301 D ．
返回：FF OF 0000000841 D3
6 ，关闭所有继电器：
发送：FF OF 0000000801007050
返回：FF OF 0000000841 D3
7 ，设置设备地址为 1
发送： 0010000000010200016 A 00
原样返回：00 $10000000010200016 A 00$
备注：发送帧的第 9 个字节 $0 x 01$ 为写入的设备地址

8，设置设备地址为 255
发送：00 10000000010200 FF EB 80

原样返回：00 10000000010200 FF EB 80
备注：发送帧的第 9 个字节 $0 x F F$ 为写入的设备地址

9，读取设备地址
发送：00 030000000185 DB
返回：00 030200 FF C5 C4
备注：返回帧的第 5 个字节 $0 x F F$ 为读取到的设备地址

10，读取继电器状态

发送：FF 01000000082812
返回：FF 010101 A1 AO
备注：返回帧的第 4 个字节 0×01 的 $B i t 0-B i t 7$ 分
别代表继电器 1 —继电器 8 ， 0 为关
闭， 1 为打开
11，读取光耦输入状态
发送：FF $02000000086 C 12$
返回：FF 02010151 AO
备注：返回帧的第 4 个字节 0×01 的 $1 N 1$－IN8分别
代表光耦1—光耦8输入信号， 0 代
表低电平， 1 代表高电平
12，设置波特率为 4800
发送：FF 1003 E9 0001020002 4A OC．
返回：FF 1003 E9 0001 C5 A7
备注：发送帧的第 9 个字节为波特率设置值， 0×0
2， 0×03 ，x04分别代表 4800 ，
9600， 19200
13 ，设置波特率为9600
发送：FF 1003 E9 0001020003 8B CC
返回：FF 1003 E9 0001 C5 A7
14，设置波特率为 19200
发送：FF 1003 E9 0001020004 CA OE
返回：FF 1003 E9 0001 C5 A7
15，读取波特率

发送：FF 0303 E8 000111 A4
返回：FF 030200049053
备注：返回帧的第 5 个字节代表读取到的波特
率， $0 \times 02,0 \times 03, x 04$ 分别代表4800，
9600， 19200
16，打开1号继电器（闪闭模式2S）
发送：FF 10000300020400040014 C5 $9 F$

返回：FF 1000030002 A4 16
备注：（1）发送帧的第3－4个字节代表继电器地址，继电器 1 —继电器 8 的地址分

别为 $0 \times 0003,0 \times 0008,0 \times 000 \mathrm{D} 0 \times 0012,0 \times 0017,0 x$ 001C，0x0021 ，0x0026
（2）发送帧的第10－11 个字节代表延时设置
值，延时基数为 0.1 S ，故延时时间为
$0 \times 0014 * 0.1=20 * 0.1 \mathrm{~S}=2 \mathrm{~S}$ ，继电器打开 2 S 后自动关闭

17，关闭 1 号继电器（闪断模式3S）
发送：FF 100003000204000200 1E A5 99

返回：FF 1000030002 A4 16
备注：（1）发送帧的第3－4个字节代表继电器地址，继电器 1 —继电器 8 的地址分

别为 $0 \times 0003,0 \times 0008,0 \times 000 \mathrm{D}, 0 \times 0012,0 \times 0017,0 x$ 001C，0x0021，0x0026
（2）发送帧的第10－－11个字节代表延时设置值，延时基数为 0.1 S ，故延时时间为
$0 \times 001 \mathrm{E} * 0.1=30 * 0.1 \mathrm{~S}=3 \mathrm{~S}$ ，继电器关闭 3 S 后自动打开

